Linear Bearing Fault Detection in Operational Condition Using Artificial Neural Network
نویسندگان
چکیده
منابع مشابه
Bearing and Gear Fault Detection Using Artificial Neural Networks
Rotating machinery plays an important role in industrial applications. When these machines recently are getting more complicated, fault diagnosis techniques have become more and more significant. In order to keep the machine performing at its best, one of the principal tools for the diagnosis of rotating machinery problems is the vibration analysis, which can be used to extract the fault featur...
متن کاملBearing Fault Detection Using Artificial Neural Networks and Genetic Algorithm
A study is presented to compare the performance of bearing fault detection using three types of artificial neural networks (ANNs), namely, multilayer perceptron (MLP), radial basis function (RBF) network, and probabilistic neural network (PNN). The time domain vibration signals of a rotating machine with normal and defective bearings are processed for feature extraction. The extracted features ...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملArtificial neural network approach for fault detection in rotary system
The detection and diagnosis of faults in technical systems are of great practical significance and paramount importance for the safe operation of the plant. An early detection of faults may help to avoid product deterioration, performance degradation, major damage to the machinery itself and damage to human health or even loss of lives. The centrifugal pumping rotary system is considered for th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ITM Web of Conferences
سال: 2019
ISSN: 2271-2097
DOI: 10.1051/itmconf/20192401004